Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiology and Molecular Biology of Plants 2020-Jun

The aqueous extract and powder of the brown alga Dictyota dichotoma (Hudson) differentially alleviate the impact of abiotic stress on rice ( Oryza sativa L.)

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Taha El-Katony
Mohamed Deyab
Magda El-Adl
Fatma Ward

키워드

요약

Algal supplements can improve crop productivity and afford protection against abiotic stress by virtue of their rich content of plant nutrients and bioactive compounds. The present work investigates the relative efficiency of the biomass and extract of the brown alga Dictyota dichotoma in protection of rice against salinity and water stress. Rice (Oryza sativa L.) cv. Sakha 101 was grown on a silty clay soil amended with the aqueous extract and powder of D. dichotoma under NaCl and PEG 6000 stress at water potential of - 0.492 MPa. Abiotic stress, particularly water stress, reduced rice growth and concentrations of K+ and protein but increased soluble sugars, starch, proline and Na+ concentrations of plant tissues, with counterbalancing effect of algal amendment. The benefit of algal amendment was greater for algal extract than algal powder and under water stress than salt stress. Algal amendment and abiotic stress promoted catalase and peroxidase activities in rice leaves with variable effect on polyphenol oxidase. The benefit of D. dichotoma to rice can be related to macro- and micro-nutrients, growth hormones, phenolics, flavonoids, sterols, vitamins and fucoidan. The production of toxic intermediates as a result of fermentation of the algal biomass in the paddy soil might reduce the benefit of algal amendment. Although rice is salt-sensitive, it is more resistant to salt stress than to drought stress. The ability of rice to retain Na+ in the root is pivotal for stress resistance, but the role of K+ partitioning is less evident.

Keywords: Algal amendment; Antioxidant enzymes; Minerals; Rice; Salinity; Water stress.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge