Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Investigative Ophthalmology and Visual Science 1997-Oct

Diets enriched in docosahexaenoic acid fail to correct progressive rod-cone degeneration (prcd) phenotype.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
G D Aguirre
G M Acland
M B Maude
R E Anderson

Palavras-chave

Resumo

OBJECTIVE

Results of a previous study show abnormal plasma lipids in progressive rod-cone degeneration (prcd)-affected dogs, with lower docosahexaenoic acid (DHA; 22:6n-3) and cholesterol levels but no differences in other plasma fatty acids, lipids, triglycerides, and fat-soluble vitamins. There is also an increase of the DHA precursor 22:5n-3, so that the ratio of 22:5n-3 to 22:6n-3 is higher in affected than in normal dogs. Because DHA is the predominant esterified fatty acid in rod outer segment (ROS) phospholipids, these findings suggest a possible causal association between abnormal plasma lipid levels and retinal degeneration. In the current study, dietary supplements rich in 22:6n-3 were used to determine whether plasma, liver, and rod outer segment phospholipid composition can be altered to modify the prcd disease phenotype.

METHODS

prcd-affected and normal control dogs were given DHA-enriched supplements for short (7- and 25-day) and long (21-week) periods, and the fatty acid composition of plasma, liver, and rod outer segment phospholipids were examined. In the long-term study, electroretinography and morphology were used to assess modification of the retinal degeneration phenotype.

RESULTS

Administration of DHA-enriched supplements resulted in increases in plasma DHA and n-3 polyunsaturated fatty acids and in decreases in some n-6 fatty acids in normal and prcd-affected dogs. Similar increases in DHA and n-3 fatty acids were observed in the liver, but affected dogs had significantly higher levels at all supplementation time points examined. In contrast, the ROS of affected dogs had statistically lower (approximately 20%) DHA levels, and these levels could not be increased with dietary supplementation. The disease phenotype could not be modified by DHA-enriched supplements.

CONCLUSIONS

Regardless of the sustained three- to fourfold elevation in plasma and liver DHA that occurs as the result of supplementation, the ROS DHA levels remain unchanged, and the prcd disease phenotype is not modified by the dietary manipulation. These findings could be the result of a reduction in the synthesis of DHA-containing phospholipids in the retinas of affected dogs; or, alternatively, there could be a reduction in DHA uptake, transport, or storage within the retinal pigment epithelium-photoreceptor complex.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge