Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Vision 2017

Taxifolin protects RPE cells against oxidative stress-induced apoptosis.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Xiaobin Xie
Jun Feng
Zefeng Kang
Shoukang Zhang
Lixia Zhang
Yan Zhang
Xuefei Li
Youzhi Tang

Palavras-chave

Resumo

Oxidative stress-induced damage to RPE cells has been suggested to be an important factor in the pathogenesis of age-related macular degeneration. Taxifolin, a flavonol, has been shown to exhibit significant antioxidant properties. The purpose of this study was to investigate the potential protective effects of taxifolin on RPE cells cultured under oxidative stress conditions and to elucidate the underlying mechanisms.

Human RPE (ARPE-19) cells were treated with different concentrations of taxifolin and 0.4 mM of H2O2 for 24 h. Cell viability was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis was quantitatively measured by annexin V/propidium iodide double staining, and the expression levels of poly (ADP-ribose) polymerase (PARP) were evaluated by western blotting. Reactive oxygen species (ROS) were measured using a commercially available ROS detection system. The expressions of phase II enzymes, including NAD(P)H quinine oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), and glutamate-cysteine ligase modifier (GCLM) and catalytic (GCLC) subunits, were examined using real-time PCR and western blotting. The nuclear localization of the nuclear factor (erythroid-derived 2)-like 2 (NRF2) protein was detected by western blotting. Results: Taxifolin clearly inhibited the decrease in H2O2-induced cell viability, cell apoptosis, and intracellular ROS generation. In addition, taxifolin inhibited the H2O2-induced PARP cleavage. Moreover, treatment with taxifolin activated mRNA and the protein expression of NRF2 by inducing the translocation of NRF2 to the nucleus. Consequently, the mRNA and protein levels of the phase II enzymes NQO1, HO-1, GCLM, and GCLC increased. Conclusions: Taxifolin was shown to protect RPE cells against oxidative stress-induced apoptosis. The potential mechanism appears to involve the activation of NRF2 and the phase II antioxidant enzyme system.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge