Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

phytic acid/oryza sativa

Linkul este salvat în clipboard
ArticoleStudii cliniceBrevete
Pagină 1 din 29 rezultate
The low phytic acid ( lpa) rice ( Oryza sativa L.) mutant Os-lpa-MH86-1, resulting from the mutation of the putative sulfate transporter gene OsSULTR3;3, was crossed with a commercial rice cultivar. The obtained progenies of generations F4 to F7 were subjected to a nontargeted metabolite profiling
Phytic acid, myo-inositol-hexakisphosphate (InsP(6)), is a storage form of phosphorus in plants. Despite many physiological investigations of phytic acid accumulation and storage, little is known at the molecular level about its biosynthetic pathway in plants. Recent work has suggested two pathways.
Dietary phytic acid is a major causative factor for low Zn bioavailability in many cereal- and legume-based diets. The bioavailability of Zn in seed of low phytic acid (lpa) variants of maize ( Zea mays L.), rice ( Oryza sativa L.), and barley ( Hordeum vulgare L.) was evaluated using a suckling rat

Novel allelic variant of Lpa1 gene associated with a significant reduction in seed phytic acid content in rice (Oryza sativa L.).

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
In plants, myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP6), also known as phytic acid (PA), is a major component of organic phosphorus (P), and accounts for up to 85% of the total P in seeds. In rice (Oryza sativa L.), PA mainly accumulates in rice bran, and chelates mineral cations, resulting in
Development of rice cultivars with low phytic acid (lpa) is considered as a primary strategy for biofortification of zinc (Zn) and iron (Fe). Here, two rice genotypes (XS110 and its lpa mutant) were used to investigate the effect of P supplies on accumulations and distributions of PA, Zn, and Fe in
The low phytic acid ( lpa) rice mutant Os-lpa-MH86-1, exhibiting a mutation-induced metabolite signature (i.e., increased levels of sugars, sugar alcohols, amino acids, phytosterols, and biogenic amines), was crossed with two commercial wild-type cultivars. The resulting progenies of generation
The seed proteome of a low phytic acid (lpa) rice line (Os-lpa-XS110-1), developed as a novel food source, was compared to that of its parental line, Xiushui 110 (XS-110). Analysis by surfaced enhanced laser desorption ionization-time-of-flight mass spectrometry (SELDI-TOF MS) and two-dimensional

Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.).

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Phytic acid (PA, myo-inositol 1,2,3,4,5,6-hexakisphosphate), or its salt form, phytate, is commonly regarded as the major anti-nutritional component in cereal and legume grains. Breeding of low phytic acid (lpa) crops has recently been considered as a potential way to increase nutritional quality of
The impact of cross-breeding two lpa rice mutants on the content of phytic acid and the metabolite profile of the resulting double mutant was investigated. Progenies resulting from the cross of Os-lpa-XS110-1, a rice mutant carrying the myo-inositol (OsMIK) mutated gene, and Os-lpa-XS110-2 with the

Phytic acid content may affect starch digestibility and glycemic index value of rice (Oryza sativa L.).

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Phytic acid (PA) is an anti-nutrient present in cereals and pulses. It is known to reduce mineral bioavailability and inhibit starch digesting α-amylase (which requires calcium for activity) in the human gut. In principle, higher the PA, lesser is the rate of starch hydrolysis. It is
Development of bakery products containing rice ( Oryza sativa, Linn.) and teff ( Eragrostis tef) could have potential health benefits due to their gluten free nature. Nine experimental runs were generated using custom design by JMP 8 software. The effect of two factors, rice variety
The manipulation of seed phosphorus is important for seedling growth and environmental P sustainability in agriculture. The mechanism of regulating P content in seed, however, is poorly understood. To study regulation of total P, we focused on phytic acid (inositol hexakisphosphate; InsP₆)
This report addresses the safety of cosmetic ingredients derived from rice, Oryza sativa. Oils, Fatty Acids, and Waxes: Rice Bran Oil functions in cosmetics as a conditioning agent--occlusive in 39 formulations across a wide range of product types. Rice Germ Oil is a skin-conditioning

A decrease in phytic acid content substantially affects the distribution of mineral elements within rice seeds.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Phytic acid (myo-inositol hexakisphosphate; InsP6) is the storage compound of phosphorus and many mineral elements in seeds. To determine the role of InsP6 in the accumulation and distribution of mineral elements in seeds, we performed fine mappings of mineral elements through synchrotron-based

Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Phytic acid (inositol hexakisphosphate [InsP(6)]) is the storage compound of phosphorus in seeds. As phytic acid binds strongly to metallic cations, it also acts as a storage compound of metals. To understand the mechanisms underlying metal accumulation and localization in relation to phytic acid
Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge