Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Advances in Space Research 2001

Composition and physical properties of starch in microgravity-grown plants.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
O A Kuznetsov
C S Brown
H G Levine
W C Piastuch
M M Sanwo-Lewandowski
K H Hasenstein

Ključne besede

Povzetek

The effect of spaceflight on starch development in soybean (Glycine max L., BRIC-03) and potato (Solanum tuberosum, Astroculture-05) was compared with ground controls by biophysical and biochemical measurements. Starch grains from plants from both flights were on average 20-50% smaller in diameter than ground controls. The ratio delta X/delta rho (delta X --difference of magnetic susceptibilities, delta rho--difference of densities between starch and water) of starch grains was ca. 15% and 4% higher for space-grown soybean cotyledons and potato tubers, respectively, than in corresponding ground controls. Since the densities of particles were similar for all samples (1.36 to 1.38 g/cm3), the observed difference in delta X/delta rho was due to different magnetic susceptibilities and indicates modified composition of starch grains. In starch preparations from soybean cotyledons (BRIC-03) subjected to controlled enzymatic degradation with alpha-amylase for 24 hours, 77 +/- 6% of the starch from the flight cotyledons was degraded compared to 58 +/- 12% in ground controls. The amylose content in starch was also higher in space-grown tissues. The good correlation between the amylose content and delta X/delta rho suggests, that the magnetic susceptibility of starch grains is related to their amylose content. Since the seedlings from the BRIC-03 experiment showed elevated post-flight ethylene levels, material from another flight experiment (GENEX) which had normal levels of ethylene was examined and showed no difference to ground controls in size distribution, density, delta X/delta rho and amylose content. Therefore the role of ethylene appears to be more important for changes in starch metabolism than microgravity.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge