Swedish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1991-Aug

Effects of Salt Stress on Amino Acid, Organic Acid, and Carbohydrate Composition of Roots, Bacteroids, and Cytosol of Alfalfa (Medicago sativa L.).

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
Länken sparas på Urklipp
F Fougère
D Le Rudulier
J G Streeter

Nyckelord

Abstrakt

Ethanol-soluble organic acid, carbohydrate, and amino acid constituents of alfalfa (Medicago sativa) roots and nodules (cytosol and bacteroids) have been identified by gas-liquid chromatography and high performance liquid chromatography. Among organic acids, citrate was the predominant compound in roots and cytosol, with malonate present in the highest concentration in bacteroids. These two organic acids together with malate and succinate accounted for more than 85% of the organic acid pool in nodules and for 97% in roots. The major carbohydrates in roots, nodule cytosol, and bacteroids were (descending order of concentration): sucrose, pinitol, glucose, and ononitol. Maltose and trehalose appeared to be present in very low concentrations. Asparagine, glutamate, alanine, gamma-aminobutyrate, and proline were the major amino acids in cytosol and bacteroids. In addition to these solutes, serine and glutamine were well represented in roots. When alfalfa plants were subjected to 0.15 m sodium chloride stress for 2 weeks, total organic acid concentration in nodules and roots were depressed by more than 40%, whereas lactate concentration increased by 11, 27, and 94% in cytosol, roots, and bacteroids, respectively. In bacteroids, lactate became the most abundant organic acid and might contribute partly to the osmotic adjustment. On the other hand, salt stress induced a large increase in the amino acid and carbohydrate pools. Within the amino acids, proline showed the largest increase, 11.3-, 12.8-, and 8.0-fold in roots, cytosol, and bacteroids, respectively. Its accumulation reflected an osmoregulatory mechanism not only in roots but also in nodule tissue. In parallel, asparagine concentration was greatly enhanced; this amide remained the major nitrogen solute and, in bacteroids, played a significant role in osmoregulation. On the contrary, the salt treatment had a very limited effect on the concentration of other amino acids. Among carbohydrates, pinitol concentration was increased significantly, especially in cytosol and bacteroids (5.4- and 3.4-fold, respectively), in which this cyclitol accounted for more than 35% of the total carbohydrate pool; pinitol might contribute to the tolerance to salt stress. However, trehalose concentration remained low in both nodules and roots; its role in osmoregulation appeared unlikely in alfalfa.

Gå med på vår
facebook-sida

Den mest kompletta databasen med medicinska örter som stöds av vetenskapen

  • Fungerar på 55 språk
  • Växtbaserade botemedel som stöds av vetenskap
  • Örter igenkänning av bild
  • Interaktiv GPS-karta - märka örter på plats (kommer snart)
  • Läs vetenskapliga publikationer relaterade till din sökning
  • Sök efter medicinska örter efter deras effekter
  • Organisera dina intressen och håll dig uppdaterad med nyheterna, kliniska prövningar och patent

Skriv ett symptom eller en sjukdom och läs om örter som kan hjälpa, skriv en ört och se sjukdomar och symtom den används mot.
* All information baseras på publicerad vetenskaplig forskning

Google Play badgeApp Store badge