Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemosphere 2018-Jan

Ametryn removal by Metarhizium brunneum: Biodegradation pathway proposal and metabolic background revealed.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Rafał Szewczyk
Anna Kuśmierska
Przemysław Bernat

Maneno muhimu

Kikemikali

Ametryn is a representative of a class of s-triazine herbicides absorbed by plant roots and leaves and characterized as a photosynthesis inhibitor. It is still in use in some countries in the farming of pineapples, soybean, corn, cotton, sugar cane or bananas; however, due to the adverse effects of s-triazine herbicides on living organisms use of these pesticides in the European Union has been banned. In the current study, we characterized the biodegradation of ametryn (100 mg L-1) by entomopathogenic fungal cosmopolite Metarhizium brunneum. Ametryn significantly inhibited the growth and glucose uptake in fungal cultures. The concentration of the xenobiotic drops to 87.75 mg L-1 at the end of culturing and the biodegradation process leads to formation of four metabolites: 2-hydroxy atrazine, ethyl hydroxylated ametryn, S-demethylated ametryn and deethylametryn. Inhibited growth is reflected in the metabolomics data, where significant differences in concentrations of L-proline, gamma-aminobutyric acid, L-glutamine, 4-hydroxyproline, L-glutamic acid, ornithine and L-arginine were observed in the presence of the xenobiotic when compared to control cultures. The metabolomics data demonstrated that the presence of ametryn in the fungal culture induced oxidative stress and serious disruptions of the carbon and nitrogen metabolism. Our results provide deeper insights into the microorganism strategy for xenobiotic biodegradation which may result in future enhancements to ametryn removal by the tested strain.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge