Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
AoB PLANTS 2019-Dec

Comparative transcriptome, physiological and biochemical analyses reveal response mechanism mediated by CBF4 and ICE2 in enhancing cold stress tolerance in Gossypium thurberi.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Xiaoyan Cai
Richard Magwanga
Yanchao Xu
Zhongli Zhou
Xingxing Wang
Yuqing Hou
Yuhong Wang
Yuanming Zhang
Fang Liu
Kunbo Wang

Maneno muhimu

Kikemikali

Low temperature is one of the key environmental stresses that impair plant growth and significantly restricts the productivity and spatial distribution of crop plants. Gossypium thurberi, a wild diploid cotton species, has adapted to a wide range of temperatures and exhibits a better tolerance to chilling stress. Here, we compared phenotypes and physiochemical changes in G. thurberi under cold stress and found this species indeed showed better cold tolerance. Therefore, to understand the molecular mechanisms of the cold tolerance in G. thurberi, we compared transcription changes in leaves of G. thurberi under cold stress by high-throughput transcriptome sequencing. In total, 35 617 unigenes were identified in the whole-genome transcription profile, and 4226 differentially expressed genes (DEGs) were discovered in the leaves upon cold treatment. Gene Ontology (GO) classification analyses showed that the majority of DEGs belonged to categories of signal transduction, transcription factors (TFs) and carbohydrate transport and metabolism. The expression of several cold-responsive genes such as ICE1, CBF4, RAP2-7 and abscisic acid (ABA) biosynthesis genes involved in different signalling pathways were induced after G. thurberi seedlings were exposed to cold stress. Furthermore, cold sensitivity was increased in CBF4 and ICE2 virus-induced gene silencing (VIGS) plants, and high level of malondialdehyde (MDA) showed that the CBF4 and ICE2 silenced plants were under oxidative stress compared to their wild types, which relatively had higher levels of antioxidant enzyme activity, as evident by high levels of proline and superoxide dismutase (SOD) content. In conclusion, our findings reveal a new regulatory network of cold stress response in G. thurberi and broaden our understanding of the cold tolerance mechanism in cotton, which might accelerate functional genomics studies and genetic improvement for cold stress tolerance in cultivated cotton.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge