Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cellular Physiology and Biochemistry 2018

Inhibition of Histone Deacetylases Prevents Cardiac Remodeling After Myocardial Infarction by Restoring Autophagosome Processing in Cardiac Fibroblasts.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Yaping Wang
Panpan Chen
Lihan Wang
Jing Zhao
Zhiwei Zhong
Yingchao Wang
Jifeng Xu

Maneno muhimu

Kikemikali

OBJECTIVE

Histone deacetylases (HDACs) play a critical role in the regulation of gene transcription, cardiac development, and diseases. The aim of this study was to investigate whether the inhibition of HDACs improves cardiac remodeling and its underlying mechanisms in a mouse myocardial infarction (MI) model.

METHODS

The HDAC inhibitor trichostatin A (TSA, 0.1 mg/kg/day) was administered via daily intraperitoneal injections for 8 consecutive weeks after MI in C57/BL mice. Echocardiography and tissue histopathology were used to assess cardiac function. Cultured neonatal rat cardiac fibroblasts (NRCFs) were subjected to simulated hypoxia in vitro. Autophagic flux was measured using the tandem fluorescent mCherry-GFP-LC3 assay. Western blot was used to detect autophagic biomarkers.

RESULTS

After 8 weeks, the inhibition of HDACs in vivo resulted in improved cardiac remodeling and hence better ventricular function. MI was associated with increased LC3-II expression and the accumulation of autophagy adaptor protein p62, indicating impaired autophagic flux, which was reversed by TSA treatment. Cultured NRCFs exhibited increased cell death after simulated hypoxia in vitro. Increased cell death was associated with markedly increased numbers of autophagosomes but not autolysosomes, as assessed by punctate dual fluorescent mCherry-green fluorescent protein tandem-tagged light chain-3 expression, indicating that hypoxia resulted in impaired autophagic flux. Importantly, TSA treatment reversed hypoxia-induced impaired autophagic flux and led to a 40% decrease in cell death. This was accompanied by improved mitochondrial membrane potential. The beneficial effects of TSA therapy were abolished by RNAi intervention targeting LAMP2; likewise, in vivo delivery of chloroquine abolished the TSA-mediated cardioprotective effects.

CONCLUSIONS

Our results provide evidence that the HDAC inhibitor TSA prevents cardiac remodeling after MI and is dependent on restoring autophagosome processing of cardiac fibroblasts.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge