Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Pharmacology 2003-May

Integrity of extracellular loop 1 of the human cannabinoid receptor 1 is critical for high-affinity binding of the ligand CP 55,940 but not SR 141716A.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
James W Murphy
Debra A Kendall

Maneno muhimu

Kikemikali

Like other G-protein coupled receptors with hydrophobic ligands, the human cannabinoid receptor 1 (CB1) is thought to bind its ligands within the transmembrane region of the receptor. However, for some of these receptors the extracellular loops (ECs) have also been shown to play a role in ligand recognition and selectivity. We have taken a mutagenesis approach to examine the role of the amino terminus, EC1, and EC3 of CB1 in ligand binding. Eight mutant receptors, each with a dipeptide insertion, were constructed, expressed, and evaluated for binding to the cannabinoid ligands (-)-cis-3[2-hydroxy-4-(1',1'-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP 55,940) and N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR 141716A). Mutants with insertions in the membrane distal region of the amino terminus or EC3 maintained affinity for both ligands. Those with insertions in the membrane proximal region of the amino terminus or EC1 exhibited a loss of affinity for CP 55,940 while retaining wild-type affinity for SR 141716A. Representative mutants were analyzed for agonist-induced inhibition of cyclic AMP accumulation, and the results indicated that G-protein coupling remained intact. Alanine substitution mutants were made to address whether it was the perturbation of the overall structure of the region or the displacement of particular side chains that was responsible for the loss of CP 55,940 binding. We conclude that a structurally intact EC1, but not the comparably short EC3, is essential for high-affinity CP 55,940 binding.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge