Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Sleep 2013-Dec

Intermittent hypoxia exacerbates pancreatic β-cell dysfunction in a mouse model of diabetes mellitus.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Shariq I Sherwani
Carolyn Aldana
Saif Usmani
Christopher Adin
Sainath Kotha
Mahmood Khan
Timothy Eubank
Philipp E Scherer
Narasimham Parinandi
Ulysses J Magalang

Maneno muhimu

Kikemikali

OBJECTIVE

The effects of intermittent hypoxia (IH) on pancreatic function in the presence of diabetes and the underlying mechanisms are unclear. We hypothesized that IH would exacerbate pancreatic β-cell dysfunction and alter the fatty acids in the male Tallyho/JngJ (TH) mouse, a rodent model of type 2 diabetes.

METHODS

TH mice were exposed for 14 d to either 8 h of IH or intermittent air (IA), followed by an intraperitoneal glucose tolerance test (IPGTT) and tissue harvest. The effect of IH on insulin release was determined by using a β3-adrenergic receptor (AR) agonist.

RESULTS

During IH, pancreatic tissue pO2 decreased from 20.4 ± 0.9 to 5.7 ± 2.6 mm Hg, as determined by electron paramagnetic resonance oximetry. TH mice exposed to IH exhibited higher plasma glucose levels during the IPGTT (P < 0.001) while the insulin levels tended to be lower (P = 0.06). Pancreatic islets of the IH group showed an enhancement of the caspase-3 staining (P = 0.002). IH impaired the β-AR agonist-mediated insulin release (P < 0.001). IH increased the levels of the total free fatty acids and saturated fatty acids (palmitic and stearic acids), and decreased levels of the monounsaturated fatty acids in the pancreas and plasma. Ex vivo exposure of pancreatic islets to palmitic acid suppressed insulin secretion and decreased islet cell viability.

CONCLUSIONS

Intermittent hypoxia increases pancreatic apoptosis and exacerbates dysfunction in a polygenic rodent model of diabetes. An increase in free fatty acids and a shift in composition towards long chain saturated fatty acid species appear to mediate these effects.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge