Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Oral Pathology and Medicine 2014-Feb

Long-term stimulation of areca nut components results in increased chemoresistance through elevated autophagic activity.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Ching-Yu Yen
Wei-Fan Chiang
Shyun-Yeu Liu
Pse-Chou Cheng
Sheng-Yang Lee
Wen-Zhai Hong
Pin-Yen Lin
Mei-Huei Lin
Young-Chau Liu

Maneno muhimu

Kikemikali

BACKGROUND

We previously demonstrated the autophagy-inducing activity in the crude extract of areca nut (ANE) and its 30-100 kDa fraction (ANE 30-100 K). This study aimed to analyze whether chronic ANE and ANE 30-100 K stimulations lead to higher stress resistance and autophagic activity in oral cells, and whether the resulting autophagic status in stimulated cells correlates with stress resistance.

METHODS

Malignant cells from the mouth oral epidermoid carcinoma Meng-1 (OECM-1) and blood (Jurkat T) origins were stimulated with non-cytotoxic ANE and ANE 30-100 K for 3 months. Sensitivity to anticancer drugs of and autophagy status in stimulated cells, analyzed respectively by XTT assay and calculating microtubule-associated protein 1 light chain 3-II LC3-II/β-actin ratios from Western blot, were compared to non-treated cells. Autophagy inhibitors, 3-methyladenine (3-MA) and chloroquine (CQ), were used to assess whether autophagy inhibition interferes the altered chemoresistance.

RESULTS

Areca nut extract-stimulated (ANE-s) and ANE 30-100 K-stimulated (30-100 K-s) OECM-1 and Jurkat T cells generally exhibited higher cisplatin and 5-fluorouracil (5-FU) resistances, compared to non-stimulated cells. Most stimulated cells expressed significantly higher levels of LC3-II and Atg4B proteins. Interestingly, these cells also showed stronger tolerances against hypoxia environment and expressed higher LC3-II levels under glucose-deprived and hypoxia conditions. Finally, both 3-MA and CQ alleviated, albeit to different degrees, the increased chemoresistance in ANE-s and/or 30-100 K-s cells.

CONCLUSIONS

Chronic stimulations of ANE or ANE 30-100 K may increase tolerance of oral cancer and leukemia T cells to anticancer drugs, as well as to glucose deprivation and hypoxia conditions, and cause an elevation of autophagy activity responsible for increased drug resistance.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge