Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Pharmacology 2002-Apr

Mitochondrial respiratory chain as a new target for anti-ischemic molecules.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Najat Bouaziz
Martine Redon
Luc Quéré
José Remacle
Carine Michiels

Maneno muhimu

Kikemikali

Vascular diseases like thrombosis, myocardial infarction, cerebral ischemia or chronic venous insufficiency affect a high proportion of the population. They are all associated with more or less pronounced ischemic conditions. We have previously shown that some venotropic drugs display an anti-ischemic activity, i.e. they prevent the hypoxia-induced decrease in ATP content in cultured cells. The effect is due to the fact that these molecules maintain mitochondrial respiratory activity during hypoxia. Among them is bilobalide. Starting from the 3D structure of bilobalide, we designed new molecules presenting the same chemical features. They were synthesized and tested for their biological activity. As the parent compound, two of them, malonic acid dicyclopent-2-enyl ester (MRC2P119) and 2-oxo-3-oxa-bicyclo[3.1.0]hexane-1-carboxylic acid allyl ester (MRC2P57), were able to markedly increase the respiratory control ratio of isolated mitochondria. They are able to prevent the inhibition of complex I by amytal and of complex III by myxothiazol, but not the uncoupling of the respiration by carbonylcyanide m-chlorophenyl hydrazone (m-CCP). Moreover, MRC2P119 and MRCP2P57 inhibit, in a dose-dependent way, the hypoxia-induced decrease in ATP content in endothelial cells as well as the subsequent activation of these cells as evidenced by an inhibition of the increase in neutrophil adherence to the endothelial cells induced by hypoxia. Finally, MRC2P119 prevent the hypoxia- and the hypoxia-reoxygenation-induced decrease in viability of SH-SY5Y neuroblastoma cells. In conclusion, we identified two new molecules, which display anti-ischemic properties when tested in vitro on endothelial and neuronal cell types. This anti-ischemic activity is probably due to a protection of complexes I and III of the mitochondrial respiratory chain.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge