Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Rhinology and Allergy 2017-Mar

Nitric oxide production is stimulated by bitter taste receptors ubiquitously expressed in the sinonasal cavity.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Carol H Yan
Samuel Hahn
Derek McMahon
David Bonislawski
David W Kennedy
Nithin D Adappa
James N Palmer
Peihua Jiang
Robert J Lee
Noam A Cohen

Maneno muhimu

Kikemikali

BACKGROUND

Bitter taste receptors (T2R) have recently been demonstrated to contribute to sinonasal innate immunity. One T2R, T2R38, regulates mucosal defense against gram-negative organisms through nitric oxide (NO) production, which enhances mucociliary clearance and directly kills bacteria. To determine whether additional T2Rs contribute to this innate defense, we evaluated two other sinonasal T2Rs (T2R4 and T2R16) for regulation of NO production and expression within the human sinonasal cavity.

METHODS

Primary human sinonasal cultures were stimulated with ligands specific to T2R4 and T2R16, colchicine and D-salicin, respectively. Cellular NO production was measured by intracellular 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence. For T2R expression mapping, sinonasal tissue was obtained from patients who underwent sinus surgery of the middle turbinate, maxillary sinus, ethmoid sinus, or sphenoid sinus. The expression of T2R4, T2R16, and T2R38 was evaluated by using immunofluorescence with validated antibodies.

RESULTS

Similar to T2R38, T2R4 and T2R16 trigger NO production in a dose-dependent manner by using the canonical taste signaling pathway in response to stimulation with their respective ligands. All three receptors were expressed in the cilia of human epithelial cells of all regions in the sinonasal cavity.

CONCLUSIONS

These three T2Rs signaled through the same NO-mediated antimicrobial pathway and were ubiquitously expressed in the sinonasal epithelium. Additional T2Rs besides T2R38 may play a role in sinonasal immune defense. Mapping of T2R expression demonstrated the potential widespread role of T2Rs in sinonasal defense, whereas the genetics of these T2Rs may contribute to our understanding of specific endotypes of chronic rhinosinusitis and develop into novel therapeutic targets.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge