Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2015-Aug

Removal of trimethylamine (fishy odor) by C₃ and CAM plants.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Phattara Boraphech
Paitip Thiravetyan

Maneno muhimu

Kikemikali

From screening 23 plant species, it was found that Pterocarpus indicus (C3) and Sansevieria trifasciata (crassulacean acid metabolism (CAM)) were the most effective in polar gaseous trimethylamine (TMA) uptake, reaching up to 90% uptake of initial TMA (100 ppm) within 8 h, and could remove TMA at cycles 1-4 without affecting photosystem II (PSII) photochemistry. Up to 55 and 45% of TMA was taken up by S. trifasciata stomata and leaf epicuticular wax, respectively. During cycles 1-4, interestingly, S. trifasciata changed its stomata apertures, which was directly induced by gaseous TMA and light treatments. In contrast, for P. indicus the leaf epicuticular wax and stem were the major pathways of TMA removal, followed by stomata; these pathways accounted for 46, 46, and 8%, respectively, of TMA removal percentages. Fatty acids, particularly tetradecanoic (C14) acid and octadecanoic (C18) acid, were found to be the main cuticular wax components in both plants, and were associated with TMA removal ability. Moreover, the plants could degrade TMA via multiple metabolic pathways associated with carbon/nitrogen interactions. In CAM plants, one of the crucial pathways enabled 78% of TMA to be transformed directly to dimethylamine (DMA) and methylamine (MA), which differed from C3 plant pathways. Various metabolites were also produced for further detoxification and mineralization so that TMA was completely degraded by plants.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge