Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Inorganic Chemistry 2000-Dec

The H93G myoglobin cavity mutant as a versatile template for modeling heme proteins: ferrous, ferric, and ferryl mixed-ligand complexes with imidazole in the cavity.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
A E Pond
M P Roach
M R Thomas
S G Boxer
J H Dawson

Maneno muhimu

Kikemikali

One of the difficulties in preparing accurate ambient-temperature model complexes for heme proteins, particularly in the ferric state, has been the generation of mixed-ligand adducts: complexes with different ligands on either side of the heme. The difference in the accessibility of the two sides of the heme in the H93G cavity mutant of myoglobin (Mb) provides a potential general solution to this problem. To demonstrate the versatility of H93G Mb for the preparation of heme protein models, numerous mixed-ligand adducts of ferrous, ferric, and ferryl imidazole-ligated H93G (H93G(Im) Mb) have been prepared. The complexes have been characterized by electronic absorption and magnetic circular dichroism (MCD) spectroscopy in comparison to analogous derivatives of wild type Mb. The starting ferric H93G(Im) Mb state spectroscopically resembles wild-type ferric Mb as expected for a complex containing a single imidazole in the proximal cavity and water bound on the distal side. Addition of a sixth ligand to ferric H93G(Im) Mb, whether charge neutral (imidazole) or anionic (cyanide and azide), results in formation of six-coordinate low-spin complexes with MCD characteristics similar to those of parallel derivatives of wild-type ferric Mb. Reduction of ferric H93G(Im) Mb and subsequent exposure to either CO, NO, or O2 produces ferrous complexes (deoxy, CO, NO, and O2) that consistently exhibit MCD spectra similar to the analogous ferrous species of wild-type ferrous Mb. Most interestingly, reaction of ferric H93G(Im) Mb with H2O2 results in the formation of a stable high-valent oxoferryl complex with MCD characteristics that are essentially identical to those of oxoferryl wild-type Mb. The generation of such a wide array of mixed-ligand heme complexes demonstrates the efficacy of the H93G Mb cavity mutant as a template for the preparation of heme protein model complexes.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge