Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Genetics and Genomics 2018-Dec

Transcriptome analysis in Malus halliana roots in response to iron deficiency reveals insight into sugar regulation.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Ya Hu
Yan-Fang Zhu
Ai-Xia Guo
Xu-Mei Jia
Li Cheng
Tong Zhao
Yan-Xiu Wang

Maneno muhimu

Kikemikali

Iron (Fe) deficiency is a frequent nutritional problem limiting apple production in calcareous soils. The utilization of rootstock that is resistant to Fe deficiency is an effective way to solve this problem. Malus halliana is an Fe deficiency-tolerant rootstock; however, few molecular studies have been conducted on M. halliana. In the present work, a transcriptome analysis was combined with qRT-PCR and sugar measurements to investigate Fe deficiency responses in M. halliana roots at 0 h (T1), 12 h (T2) and 72 h (T3) after Fe deficiency stress. Total of 2473, 661, and 776 differentially expressed genes (DEGs) were identified in the pairs of T2 vs. T1, T3 vs. T1, and T3 vs. T2, respectively. Several DEGs were enriched in the photosynthesis, glycolysis and gluconeogenesis, tyrosine metabolism and fatty acid degradation pathways. The glycolysis and photosynthesis pathways were upregulated under Fe deficiency. In this experiment, sucrose accumulated in Fe-deficient roots and leaves. However, the glucose content significantly decreased in the roots, while the fructose content significantly decreased in the leaves. Additionally, 15 genes related to glycolysis and sugar synthesis and sugar transport were selected to validate the accuracy of the transcriptome data by qRT-PCR. Overall, these results indicated that sugar synthesis and metabolism in the roots were affected by Fe deficiency. Sugar regulation is a way by which M. halliana responds to Fe deficiency stress.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge