Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemical Research in Toxicology 2007-Nov

Uterine peroxidase-catalyzed formation of diquinone methides from the selective estrogen receptor modulators raloxifene and desmethylated arzoxifene.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Hong Liu
Zhihui Qin
Gregory R J Thatcher
Judy L Bolton

Maneno muhimu

Kikemikali

Long-term usage of the selective estrogen receptor modulator (SERM) tamoxifen has been associated with an increased risk of endometrial cancer. One potential mechanism of tamoxifen-induced carcinogenesis involves metabolism to reactive intermediates, such as an o-quinone, quinone methide, and carbocations. We have previously shown that the benzothiophene SERMs, raloxifene and desmethylated arzoxifene (DMA), can also be bioactivated to electrophilic quinoids by rat/human liver microsomes and rat hepatocytes [(2006) Chem. Res. Toxicol. 19, 1125-1137]. Because the uterus is a major target tissue of estrogens and antiestrogens, it was of interest to determine if quinoids could be formed from SERMs in uterine tissue potentially producing cytotoxic effects. Incubations with rat uterine microsomes showed that both raloxifene and DMA could be oxidized to electrophilic diquinone methides that were trapped as the corresponding GSH conjugates. A new raloxifene GSH-dependent conjugate was identified as raloxifene Cys-Gly that was formed from the hydrolysis of 7-glutathinyl raloxifene by gamma-glutamyl transpeptidase. Interestingly, the metabolism of raloxifene and DMA in rat uterine microsomes was not NADPH-dependent and could be inhibited by cyanide and NADPH or enhanced by H2O2. In addition, coincubations with the peroxidase substrates guaiacol or o-phenlyenediamine inhibited diquinone methide GSH conjugate formation from both SERMs. Incubations of raloxifene and DMA with horseradish peroxidase (HRP) were studied as models of the interaction between benzothiophene SERMs and peroxidase. The results showed that HRP could directly oxidize raloxifene and DMA to the corresponding dimers via the formation of phenoxyl radicals in the absence of exogenous hydrogen peroxide. In addition, GSH appears to be involved in multiple peroxidase-catalyzed oxidative metabolic pathways of benzothiophene SERMs. Finally, COATag (covert oxidatively activated tag) methodology, which involves the utilization of biotin-conjugated raloxifene and DMA, was used to identify target proteins by affinity chromatography. Incubations of raloxifene and DMA COATags with rat uterine microsomes showed several modified proteins by Western blot analysis. The protein modification could be enhanced by the addition of H2O2 and decreased by the addition of NADPH, suggesting that unlike liver metabolism the formation of quinoids in the uterus could be mediated by uterine peroxidases.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge