Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2012-Mar

Visual tracking of plant virus infection and movement using a reporter MYB transcription factor that activates anthocyanin biosynthesis.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Leonor C Bedoya
Fernando Martínez
Diego Orzáez
José-Antonio Daròs

Maneno muhimu

Kikemikali

Insertion of reporter genes into plant virus genomes is a common experimental strategy to research many aspects of the viral infection dynamics. Their numerous advantages make fluorescent proteins the markers of choice in most studies. However, the use of fluorescent proteins still has some limitations, such as the need of specialized material and facilities to detect the fluorescence. Here, we demonstrate a visual reporter marker system to track virus infection and movement through the plant. The reporter system is based on expression of Antirrhinum majus MYB-related Rosea1 (Ros1) transcription factor (220 amino acids; 25.7 kD) that activates a series of biosynthetic genes leading to accumulation of colored anthocyanins. Using two different tobacco etch potyvirus recombinant clones tagged with Ros1, we show that infected tobacco (Nicotiana tabacum) tissues turn bright red, demonstrating that in this context, the sole expression of Ros1 is sufficient to induce pigment accumulation to a level readily detectable to the naked eye. This marker system also reports viral load qualitatively and quantitatively by means of a very simple extraction process. The Ros1 marker remained stable within the potyvirus genome through successive infectious passages from plant to plant. The main limitation of this marker system is that color output will depend on each particular plant host-virus combination and must be previously tested. However, our experiments demonstrate accurate tracking of turnip mosaic potyvirus infecting Arabidopsis (Arabidopsis thaliana) and either tobacco mosaic virus or potato X virus infecting Nicotiana benthamiana, stressing the general applicability of the method.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge