Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry

Water deficit induces variation in expression of stress-responsive genes in two peanut (Arachis hypogaea L.) cultivars with different tolerance to drought.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Khady Nani Dramé
Danièle Clavel
Anne Repellin
Chantal Passaquet
Yasmine Zuily-Fodil

Maneno muhimu

Kikemikali

Peanut (Arachis hypogaea L.) is an important subsistence and cash crop in the semi-arid tropics where it often suffers from drought stress. Although its ecophysiological responses are studied, little is known about the molecular events involved in its adaptive responses to drought. The aim of this study was to investigate the involvement of membrane phospholipid and protein degrading enzymes as well as protective proteins such as "late embryogenesis-abundant" (LEA) protein in peanut adaptive responses to drought. Partial cDNAs encoding putative phospholipase D alpha, cysteine protease, serine protease and a full-length cDNA encoding a LEA protein were cloned. Their expression in response to progressive water deficit and rehydration was compared between cultivars differing in their tolerance to drought. Differential gene expression pattern according to either water deficit intensity and cultivar's tolerance to drought were observed. A good correspondence between the molecular responses of the studied cultivars and their physiological responses previously defined in greenhouse and field experiments was found. Molecular characters, as they were detectable at an early stage, could therefore be efficiently integrated in groundnut breeding programmes for drought adaptation. Thus, the relevance of the target genes as drought tolerance indicators is discussed.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge