Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Scientific Reports 2020-Jul

Oral interactions between a green tea flavanol extract and red wine anthocyanin extract using a new cell-based model: insights on the effect of different oral epithelia

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Susana Soares
Sónia Soares
Elsa Brandão
Carlos Guerreiro
Nuno Mateus
Victor de Freitas

Maneno muhimu

Kikemikali

Phenolic compounds (PC) are linked to astringency sensation. Astringency studies typically use simple models, with pure PC and/or proteins, far from what is likely to occur in the oral cavity. Different oral models have been developed here, comprising different oral epithelia (buccal mucosa (TR146) and tongue (HSC-3)) and other main oral constituents (human saliva and mucosal pellicle). These models, were used to study the interaction with two PC extracts, one rich in flavanols (a green tea extract) and one rich in anthocyanins (a red wine extract). It was observed that within a family of PC, the PC seem to have a similar binding to both TR146 and HSC-3 cell lines. When the oral constituents occur altogether, flavanols showed a higher interaction, driven by the salivary proteins. Conversely, anthocyanins showed a lower interaction when the oral constituents occur altogether, having a higher interaction only with oral cells. Epigallocatechin gallate, epicatechin gallate, epigallocatechin-3-O(3-O-methyl) gallate were the flavanols with the highest interaction. For the studied anthocyanins (delphinidin-3-glucoside, peonidin-3-glucoside, petunidin-3-glucoside and malvidin-3-glucoside), there was not a marked difference on their interaction ability. Overall, the results support that the different oral constituents can have a different function at different phases of food (PC) intake. These differences can be related to the perception of different astringency sub-qualities.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge