Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cancer Biology and Therapy 2008-Jul

Sustained ERK activation is involved in the kaempferol-induced apoptosis of breast cancer cells and is more evident under 3-D culture condition.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Bong-Woo Kim
Eung-Ryoung Lee
Hye-Min Min
Hyo-Soon Jeong
Jae-Yeon Ahn
Jung-Hyun Kim
Hye-Yeon Choi
Hana Choi
Eun Young Kim
Se Pill Park

Anahtar kelimeler

Öz

In order to determine the effects of a variety of flavonoids, we applied differing amounts of several flavonoids to human breast cancer cells. Kaempferol treatment resulted in significant reduction of cell viability in the MCF-7 cells, although it exerted only minor effect on the cell viability of MDA-MB-231 or mammary epithelial HC-11 cells. Kaempferol was demonstrated to induce sustained ERK activation concomitantly with MEK1 and ELK1 activation, and this kaempferol-induced apoptosis was suppressed by treatment with PD98059, the overexpression of a kinase-inactive ERK mutant, or ERK siRNA. Kaempferol treatment was shown to profoundly induce the generation of fluorescent DCF in the MCF-7 cells, and treatment with N-acetyl cysteine suppressed kaempferol-induced PARP cleavage. Moreover, because breast cancer is associated with increased collagen synthesis and accumulation, we utilized a collagen-based 3D culture method. Under the 3-dimensional culture condition employed herein, kaempferol treatment was shown to result in a significant reduction in cell viability, an effect which occurred in a dose-dependent manner. Compared with what was observed under conventional 2D culture condition, we observed more evident apoptotic cell death and ERK activation as the result of kaempferol treatment in a collagen-based 3D culture environment. Similar to the case of conventional 2D cultured cells, the addition of PD98059 significantly suppressed intracellular ROS production. Collectively, these results show that the sustained activation of the ERK signaling pathway is markedly involved in kaempferol-induced apoptosis of breast cancer MCF-7 cells, and that this effect is more evident under 3D culture condition.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge