Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ultrasonics Sonochemistry 2020-Jan

Green synthesis of garlic oil nanoemulsion using ultrasonication technique and its mechanism of antifungal action against Penicillium italicum.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Yuan Long
Wenqian Huang
Qingyan Wang
Guiyan Yang

Anahtar kelimeler

Öz

Penicillium italicum (P. italicum) can cause significant economic loss of fruits and vegetables. Although garlic oil (GO) is an effective antimicrobial agent, the unstability and hydrophobicity limit its use as an environmentally friendly alternative to the conventional antibiotics against P. italicum. In this study, we focused on the fabrication and characterization of a functional GO nanoemulsion (NE) using ultrasonic technique and revealed the antifungal mechanism of the GO NE on P. italicum based on morphological, structural and molecular analyses. The optimal hydrophilic lipophilic balance (HLB) value determined for GO was 14 through the combination of Tween 80 and Span 80. Then the Box-Benhnken Design (BBD) was applied to produce the GO NE and the effects of different fabrication parameters on the particle size were evaluated. The optimal GO NE was selected with the GO concentration of 5.5%, the Smix concentration of 10%, the ultrasonic time of 5 min and the power of 50%. This GO NE had the smallest particle size of 52.27 nm, the best antifungal effect and the most stability. Furthermore, the antifungal mechanism of the GO NE on P. italicum was evaluated by extracellular conductivity, micro-Raman spectra, fluorescence imaging and scanning electron microscopy (SEM) imaging. The results presented that the GO NE retained the antifungal active ingredients. The fungal cell structure and morphology were malformed after treated with the GO NE and the lipids, nucleic acids and protein of P. italicum were destructed. Finally, the optimal GO NE was applied in vivo and P. italicum in citrus was successfully inhibited. It indicated that the optimal GO NE had the better antifungal activity against P. italicum than the pure GO. Besides, the minimum inhibitory concentration (MIC) of GO after preparing into the NE was changed from 3.7% to 0.01265% with about 300 times improvement of bioavailability. Therefore, the synthetic GO NE which promoted the bioavailability of GO was recommended as a promising alternative to inhibit P. italicum in vegetables and fruits.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge