Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ayurveda and Integrative Medicine 2018-Oct

Antimicrobial effect of herbal extract of Acacia arabica with triphala on the biofilm forming cariogenic microorganisms.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Karthikeyan Ramalingam
Bennett T Amaechi

キーワード

概要

BACKGROUND

Dental caries is a biofilm-related infectious disease with a multifactorial etiology, over five billion inhabitants have affected worldwide due to this disease.

OBJECTIVE

Antimicrobial efficacy of a mixed herbal powder extract (MHPE) against cariogenic microorganisms was investigated.

METHODS

MIC, MBC, kinetics of killing, biofilm disruption and anticaries effect of MHPE were determined. For biofilm disruption, biofilms of Streptococcus mutans, Lactobacillus casei, Actinomyces viscosus and Candida albicans were treated with MHPE for 30 min and attached cells were quantified after staining. For live/dead staining biofilm assay, S. mutans biofilm treated with MHPE for 1min, 5min and 1 h was examined with confocal laser scanning system after live/dead staining. Efficacy was experimented by structural quality using Scanning Electron Microscope (SEM). Anticaries effect was determined by formation of caries-like lesion in continuous flow biofilm model.

RESULTS

MHPE exhibited inhibition zones ranging from 12.5 to 24.0 mm. The highest inhibition zone was recorded at concentration of 50 μg/ml. MIC for S. mutans was between 12.23 and 36.7 μg/ml, while the MBC values ranged from 36.7 to 110.65 μg/ml. Inhibitory concentration of MHPE was three fold higher than CHLX. Significant reduction of cell count (49-95%) was observed with increasing time and higher concentration. Percentage biofilm reduction compare with negative control was 96.9% (A. viscosus), 94% (C. albicans), 99.8% (L. casei) and 91.7% (S. mutans). For MHPE-treated biofilm, live/dead staining demonstrated significant (p < 0.05) higher in deceased red fluorescence areas in all kinetics points from 53.6% (1min) to 85% (1h). SEM confirmed the damage in the outer layers of S. mutans. MHPE has components with effective antibacterial activity against caries-inducing microorganisms.

CONCLUSIONS

The anti-adherence and anti-biofilm effect as well as the faster killing activity suggests that MHPE formula has effective antibacterial activity and could be a useful source of anti-cariogenic agents in near future.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge