Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Clinical and Experimental Pharmacology and Physiology 2001-Nov

Cerebrovascular dysfunction after subarachnoid haemorrhage: novel mechanisms and directions for therapy.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
C G Sobey

キーワード

概要

1. When a cerebral aneurysm ruptures, bleeding and clot formation occur around the surface of the brain, including several major blood vessels. The resulting condition, known as subarachnoid haemorrhage (SAH), often results in death or severe disability and is a significant cause of stroke. Delayed cerebral vasospasm and impaired vasodilatation are critical clinical complications that occur after SAH. Mechanisms contributing to the development of vasospasm and abnormal reactivity of cerebral arteries after SAH have been intensively investigated in recent years. The present short review briefly decribes recent advances in our knowledge of two relatively novel aspects of the mechanism(s) underlying the vascular abnormalities following SAH. 2. Cerebral arteries are depolarized after SAH, possibly due to decreased activity of potassium channels in vascular muscle. Decreased basal activation of potassium channels may be due to several mechanisms, including impaired activity of nitric oxide (NO). Vasodilator drugs that produce hyperpolarization, such as potassium channel openers, appear to be particularly effective for dilating cerebral arteries after experimental SAH. 3. Subarachnoid haemorrhage often involves decreased responsiveness of cerebral arteries to NO. This could be due to impaired activity of soluble guanylate cyclase, resulting in reduced basal levels of cGMP in cerebral vessels. However, an alternative explanation is that there may be an increased rate of cGMP hydrolysis by phosphodiesterase (PDE)-V in the cerebral vascular wall and that this abnormality contributes substantially to the impairment of NO-mediated cerebral vasodilatation after SAH. In support of this proposal, vasodilator responses to NO are reported to be normalized when coadministered with a PDE-V inhibitor following experimental SAH. 4. Thus, in cerebral vascular muscle after SAH, abnormalities of vasodilator mechanisms involving potassium channel function and also NO/cGMP activity may contribute to cerebral vascular dysfunction. These mechanisms may also represent useful and novel therapeutic targets for the treatment of vasospasm.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge