Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pain 2004-Jan

Cholinergic modulation of nociceptive responses in vivo and neuropeptide release in vitro at the level of the primary sensory neuron.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Gregory O Dussor
Gabriela Helesic
Kenneth M Hargreaves
Christopher M Flores

キーワード

概要

Muscarinic acetylcholine receptors (mAChRs) have been widely reported as pharmacological targets for the treatment of pain. However, most of these efforts have focused on CNS mAChRs and their role in modulating nociception at the level of the spinal cord. The present study examines the contribution of peripheral mAChRs in trigeminal nociceptive pathways using a combination of in vivo and in vitro approaches. In the formalin model of orofacial nociception in rats, a peri-oral co-injection of the M2 agonist arecaidine dose-dependently inhibited phase 2 nocifensive behavior up to approximately 50% at 5 nmol. This effect was blocked by co-treatment with the mAChR antagonist atropine and was not seen when arecaidine was administered under the skin of the back, a site distant from that of the formalin injection. In vitro superfusion of isolated rat buccal mucosa with the non-selective mAChR agonist muscarine or arecaidine led to a concentration-dependent inhibition of capsaicin-evoked CGRP release to 39% (EC50=255 nM) and 28% (EC50=847 nM) of control values, respectively. Both responses were blocked by the non-selective mAChR antagonist atropine or the M2 antagonist gallamine. Further, the endogenous ligand ACh produced a bi-phasic response, potentiating evoked CGRP release to 195% of control (EC50= 918nM) and inhibiting evoked CGRP release to 45% of control (EC50=255 microM), effects that were shown to be mediated by nAChRs and mAChRs, respectively. Finally, combined in situ hybridization/immunofluorescence demonstrated that m2 mRNA was present in 20% of trigeminal ganglion neurons between 30 and 60 microm in diameter and that 5-9% of these also expressed CGRP or VR1 immunoreactivity. These results show that activation of peripheral M2 receptors produces antinociception in vivo and the inhibition of nociceptor activity in vitro. While histological analyses at the level of the trigeminal neuronal cell bodies leave open the question of whether the effects of M2 agonists are direct or indirect, these data indicate that primary sensory neuronal M2 receptors may represent a viable peripheral target for the treatment of pain and inflammation.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge