Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Investigative Ophthalmology and Visual Science 2004-Nov

Compartmental analysis of taurine transport to the outer retina in the bovine eye.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Jost Hillenkamp
Ali A Hussain
Timothy L Jackson
Paul A Constable
Joanna R Cunningham
John Marshall

キーワード

概要

OBJECTIVE

To assess the relative resistance presented individually by Bruch's membrane-choroid (BC) and the retinal pigment epithelium (RPE) to movement of taurine between the choroidal circulation and the outer retina. To quantify the effect of light-evoked changes in subretinal potassium concentration on the transepithelial transport of taurine across bovine RPE.

METHODS

Transport studies were performed in Ussing chambers with intact and RPE-denuded specimens of BC. RPE viability was monitored by recording transepithelial potential (TEP) and transepithelial resistance (TER). Taurine transport with substrate concentrations in the micro- and millimolar range, reflecting physiological taurine concentrations in plasma, retina, and subretinal space was quantified by high-performance liquid chromatography (HPLC) and radiotracer techniques. Taurine transport was also assessed after apical potassium concentration was lowered from 6.0 to 2.2 mM to mimic the effects of light.

RESULTS

Transport of taurine across RPE-BC at a 10-mM substrate concentration increased from 32.92 before to 111.72 nanomoles/4 mm per hour after removal of the RPE. Similarly, at 50 microM taurine, transport rates increased from 0.158 to 0.439 nanomoles/4 mm per hour after removal of the RPE. At both high (10 mM) and low (50 microM) substrate concentrations, lowering of apical potassium was associated with decreased transport of taurine across the RPE. For taurine concentrations greater than 42 microM, the rate-limiting compartment for transport of taurine to the outer retina was the RPE monolayer. Similar rates were observed across each compartment for concentrations <42 microM.

CONCLUSIONS

The magnitude and directionality of taurine transport across the RPE is determined solely by the driving taurine concentration gradient and is modulated by subretinal levels of potassium. Such modulation may provide a mechanism for conserving retinal taurine. Processes that increase the resistance to diffusion across Bruch's membrane such as human ageing and increased thickening and deposition of debris associated with age-related macular degeneration (AMD) are likely to affect transport across the RPE, culminating in a secondary retinal taurine deficiency.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge