Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American journal of contact dermatitis : official journal of the American Contact Dermatitis Society 1999-Jun

Degradation products of monoterpenes are the sensitizing agents in tea tree oil.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
B M Hausen
J Reichling
M Harkenthal

キーワード

概要

BACKGROUND

Patients using tea tree oil (TTO) topically may become sensitized to this natural remedy. More than 30 cases have been documented in the literature since 1991.

OBJECTIVE

Freshly distilled, as well as oxidized TTO, some fractions, and single constituents were used for experimental sensitization in guinea pigs. TTO was stored on a window sill to study the influence of light, oxygen, and warmth. The oxidized oil and different fractions were devoted to experimental sensitization in guinea pigs to determine their sensitizing potency. Fifteen constituents were patch tested in TTO-sensitive patients to find how many may play a role as contact allergens.

METHODS

Guinea pigs were sensitized by a modified FCA-method (Freund's complete adjuvant) with freshly distilled TTO, oxidized TTO, the monoterpene and sesquiterpene fraction, and 1, 8-cineole. TTO-sensitive patients were tested with 15 typical constituents and degradation products. Gas chromatographic analysis was used to detect degradation products of the deteriorated TTO.

RESULTS

Fresh TTO was revealed to be a very weak sensitizing material whereas oxidized TTO was 3 times stronger. The monoterpene fraction showed to be a stronger sensitizer than the sesquiterpene fraction. All 11 patients reacted mostly with a ++-plus or even a -plus reaction to alpha-terpinene, terpinolene and ascaridol. alpha-Phellandrene became positive in four patients, myrcene in only two. Gas chromatographic analyses showed that the formation of peroxides increased within 4 days from less than 50 to more than 500 ppm. Peroxides, epoxides and endoperoxides were formed. Deterioration products of alpha-terpinene were found to be mainly p-cymene, ascaridol, isoascaridol, a ketoperoxide, and colorless crystals that likely were 1,2,4-trihydroxy menthane. The p-cymene content increased dramatically from 2% to 11.5%. alpha- and gamma-terpinene, as well as terpinolene, were reduced to one half of their former concentration. Ascaridol and isoascaridol have never before been found in TTO.

CONCLUSIONS

Tea tree oil kept in open and closed bottles or other containers undergoes photooxidation within a few days to several months, leading to the creation of degradation products that are moderate to strong sensitizers. Peroxides, epoxides and endoperoxides, like ascaridol and 1,2,4-trihydroxy menthane, are formed. These must be considered responsible for the development of allergic contact dermatitis seen in individuals treating themselves with the oil. A test series with 15 characteristic constituents is recommended for patch testing.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge