Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Medical Hypotheses 2009-Nov

Epigenetic side-effects of common pharmaceuticals: a potential new field in medicine and pharmacology.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Antonei B Csoka
Moshe Szyf

キーワード

概要

The term "Epigenetics" refers to DNA and chromatin modifications that persist from one cell division to the next, despite a lack of change in the underlying DNA sequence. The "epigenome" refers to the overall epigenetic state of a cell, and serves as an interface between the environment and the genome. The epigenome is dynamic and responsive to environmental signals not only during development, but also throughout life; and it is becoming increasingly apparent that chemicals can cause changes in gene expression that persist long after exposure has ceased. Here we present the hypothesis that commonly-used pharmaceutical drugs can cause such persistent epigenetic changes. Drugs may alter epigenetic homeostasis by direct or indirect mechanisms. Direct effects may be caused by drugs which affect chromatin architecture or DNA methylation. For example the antihypertensive hydralazine inhibits DNA methylation. An example of an indirectly acting drug is isotretinoin, which has transcription factor activity. A two-tier mechanism is postulated for indirect effects in which acute exposure to a drug influences signaling pathways that may lead to an alteration of transcription factor activity at gene promoters. This stimulation results in the altered expression of receptors, signaling molecules, and other proteins necessary to alter genetic regulatory circuits. With more chronic exposure, cells adapt by an unknown hypothetical process that results in more permanent modifications to DNA methylation and chromatin structure, leading to enduring alteration of a given epigenetic network. Therefore, any epigenetic side-effect caused by a drug may persist after the drug is discontinued. It is further proposed that some iatrogenic diseases such as tardive dyskinesia and drug-induced SLE are epigenetic in nature. If this hypothesis is correct the consequences for modern medicine are profound, since it would imply that our current understanding of pharmacology is an oversimplification. We propose that epigenetic side-effects of pharmaceuticals may be involved in the etiology of heart disease, cancer, neurological and cognitive disorders, obesity, diabetes, infertility, and sexual dysfunction. It is suggested that a systems biology approach employing microarray analyses of gene expression and methylation patterns can lead to a better understanding of long-term side-effects of drugs, and that in the future, epigenetic assays should be incorporated into the safety assessment of all pharmaceutical drugs. This new approach to pharmacology has been termed "phamacoepigenomics", the impact of which may be equal to or greater than that of pharmacogenetics. We provide here an overview of this potentially major new field in pharmacology and medicine.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge