Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Molecular Medicine 2018-Apr

Gastrodin protects MC3T3-E1 osteoblasts from dexamethasone-induced cellular dysfunction and promotes bone formation via induction of the NRF2 signaling pathway.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Shengye Liu
Tao Fang
Liyu Yang
Zhiguang Chen
Shuai Mu
Qin Fu

キーワード

概要

Glucocorticoid (GC)-induced osteoporosis (GIO) is one of the most common secondary and iatrogenic forms of osteoporosis. GCs are widely used in clinical therapy and play a key role in the normal regulation of bone remodeling. However, the prolonged and high-dose administration of GCs results in the occurrence of osteoporosis, which is partially due to the dysfunction and apoptosis of osteoblasts and osteocytes. The aim of the present study was to investigate the effects of gastrodin, a natural bioactive compound isolated from the traditional Chinese herbal agent Gastrodia elata, on GC-treated MC3T3‑E1 murine osteoblastic cells. MC3T3‑E1 cells were exposed to dexamethasone (DEX), with or without gastrodin pretreatment, and cell viability was measured by the cell counting kit-8 (CCK-8) assay. Quantitative polymerase chain reaction analysis was performed to evaluate osteogenic gene expression, and cellular alkaline phosphatase (ALP) activity was measured as well. Alizarin Red staining of calcium deposits was found to reflect the degree of osteoblast maturity. Western blotting was performed to determine the expression of osteogenic and adipogenic differentiation key proteins, as well as nuclear factor-like 2 (NRF2) pathway‑related proteins. Annexin V-fluorescein isothiocyanate̸propidium iodide flow cytometric analysis was performed to determine osteoblast apoptosis. JC-1 staining was used to detect the changes of the mitochondrial membrane potential in cells. The results revealed that gastrodin prevented the decrease in cell viability caused by DEX-induced MC3T3‑E1 cell dysfunction, and that groups pretreated with gastrodin exhibited higher mRNA levels of osteogenic genes, such as Runx2, osterix, bone morphogenetic protein-2 and osteocalcin. Furthermore, treatment with both DEX and gastrodin was associated with increased ALP activity in MC3T3-E1 cells, as well as more calcium deposits, compared with cells treated with DEX alone. In addition, gastrodin increased osteogenic key marker protein Runx2 while activating NRF2 and downstream effector protein expression. Therefore, gastrodin may have the potential to reduce DEX-induced cell apoptosis and increase the mitochondrial membrane potential against DEX. These results demonstrated that gastrodin was able to prevent and/or delay DEX‑induced osteoporosis by improving osteoblast function, and these protective effects were verified in an animal model.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge