Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neuroscience 2014-Oct

Photoactivation-induced instability of rhodopsin mutants T4K and T17M in rod outer segments underlies retinal degeneration in X. laevis transgenic models of retinitis pigmentosa.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Beatrice M Tam
Syed M Noorwez
Shalesh Kaushal
Masahiro Kono
Orson L Moritz

キーワード

概要

Retinitis pigmentosa (RP) is an inherited neurodegenerative disease involving progressive vision loss, and is often linked to mutations in the rhodopsin gene. Mutations that abolish N-terminal glycosylation of rhodopsin (T4K and T17M) cause sector RP in which the inferior retina preferentially degenerates, possibly due to greater light exposure of this region. Transgenic animal models expressing rhodopsin glycosylation mutants also exhibit light exacerbated retinal degeneration (RD). In this study, we used transgenic Xenopus laevis to investigate the pathogenic mechanism connecting light exposure and RD in photoreceptors expressing T4K or T17M rhodopsin. We demonstrate that increasing the thermal stability of these rhodopsins via a novel disulfide bond resulted in significantly less RD. Furthermore, T4K or T17M rhodopsins that were constitutively inactive (due to lack of the chromophore-binding site or dietary deprivation of the chromophore precursor vitamin A) induced less toxicity. In contrast, variants in the active conformation accumulated in the ER and caused RD even in the absence of light. In vitro, T4K and T17M rhodopsins showed reduced ability to regenerate pigment after light exposure. Finally, although multiple amino acid substitutions of T4 abolished glycosylation at N2 but were not toxic, similar substitutions of T17 were not tolerated, suggesting that the carbohydrate moiety at N15 is critical for cell viability. Our results identify a novel pathogenic mechanism in which the glycosylation-deficient rhodopsins are destabilized by light activation. These results have important implications for proposed RP therapies, such as vitamin A supplementation, which may be ineffective or even detrimental for certain RP genotypes.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge