Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cancer Chemotherapy and Pharmacology 1996

Reversal of doxorubicin, etoposide, vinblastine, and taxol resistance in multidrug resistant human sarcoma cells by a polymer of spermine.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
M P Gosland
M N Gillespie
C P Tsuboi
S Tofiq
J W Olson
P A Crooks
S M Aziz

キーワード

概要

We have previously described the synthesis of a cytotoxic polymeric conjugate of spermine (Poly-SPM) which is able to inhibit the transport of polyamines (spermine, spermidine, and putrescine) into normal and malignant cells. Recent studies examining the toxicity of Poly-SPM in parental and multidrug resistant (MDR) cancer cells have revealed a cross-resistance in the MDR variant Dx5 to the toxic effects of the conjugate in the MDR-positive cells. There were also differences in spermine and putrescine uptake rates between parental and MDR-positive with the MDR-positive cells having a lower Vmax and a higher Km. The ability of this Poly-SPM to reverse MDR was examined in MDR variants (Dx5 cells) of the human sarcoma cell line MES-SA. The cells express high levels of the mdr1 gene product, P-glycoprotein, and are 25-to 60-fold resistant to doxorubicin (DOX), etoposide (VP-16), vinblastine (VBL), and taxol (TAX). Cytotoxicity was measured by the MTT [3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Poly-SPM (50 microM) lowered the drug concentration IC50 values in the Dx5 cells by 37-fold with VBL, 42-fold with DOX, 29-fold with VP-16, and 25-fold with TAX when compared to the control IC50 values without Poly-SPM. This reversal of resistance was concentration dependent, decreasing 17-fold with DOX, 6.1-fold with VBL, 19-fold with VP-16, and 5-fold with TAX when 25 microM Poly-SPM was used. No modulation was observed in the parental cell line MES-SA, which does not express the mdr1 gene. Poly-SPM had no influence on the IC50 of non-MDR chemotherapeutic agents such as cisplatin. The modulation studies correlated with the ability of Poly-SPM to reverse the cellular accumulation defect of [3H]-VBL and [3H]-TAX in the Dx5 but not MES-SA cells. Pretreatment of the Dx5 cell with alpha-difluoromethylornithine (DFMO at 2 and 5 microM) for 24 h increased the function of the MDR transporter to further decrease the cellular accumulation of VBL and TAX when compared to untreated cells. DFMO pretreatment is known to upregulate the polyamine transporter(s). These findings show that, in addition to inhibiting polyamine transport, Poly-SPM reverses MDR in Dx5 cells, suggesting a potential relationship between the polyamine influx transporter and the MDR efflux pump. This potential functional link between the polyamine influx transporter(s) and the MDR efflux transporter (P-glycoprotein) offers a novel approach to inhibiting this form of drug resistance.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge