Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Trace Elements in Medicine and Biology 2005

Selenium in Australia: selenium status and biofortification of wheat for better health.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Graham H Lyons
Geoffrey J Judson
Ivan Ortiz-Monasterio
Yusuf Genc
James C R Stangoulis
Robin D Graham

キーワード

概要

Selenium (Se) is an essential micronutrient for humans and animals, but is deficient in at least a billion people worldwide. Wheat (Triticum aestivum L.) is a major dietary source of Se. The largest survey to date of Se status of Australians found a mean plasma Se concentration of 103 microg/l in 288 Adelaide residents, just above the nutritional adequacy level. In the total sample analysed (six surveys from 1977 to 2002; n = 834), plasma Se was higher in males and increased with age. This study showed that many South Australians consume inadequate Se to maximise selenoenzyme expression and cancer protection, and indicated that levels had declined around 20% from the 1970s. No significant genotypic variability for grain Se concentration was observed in modern wheat cultivars, but the diploid wheat Aegilops tauschii L. and rye (Secale cereale L.) were higher. Grain Se concentrations ranged 5-720 microg/kg and it was apparent that this variation was determined mostly by available soil Se level. Field trials, along with glasshouse and growth chamber studies, were used to investigate agronomic biofortification of wheat. Se applied as sodium selenate at rates of 4-120 g Se/ha increased grain Se concentration progressively up to 133-fold when sprayed on soil at seeding and up to 20-fold when applied as a foliar spray after flowering. A threshold of toxicity of around 325 mg Se/kg in leaves of young wheat plants was observed, a level that would not normally be reached with Se fertilisation. On the other hand sulphur (S) applied at the low rate of 30 kg/ha at seeding reduced grain Se concentration by 16%. Agronomic biofortification could be used by food companies as a cost-effective method to produce high-Se wheat products that contain most Se in the desirable selenomethionine form. Further studies are needed to assess the functionality of high-Se wheat, for example short-term clinical trials that measure changes in genome stability, lipid peroxidation and immunocompetence. Increasing the Se content of wheat is a food systems strategy that could increase the Se intake of whole populations.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge