Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
CNS Drugs 2003

Therapeutic potential of cannabinoids in CNS disease.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
J Ludovic Croxford

キーワード

概要

The major psychoactive constituent of Cannabis sativa, delta(9)-tetrahydrocannabinol (delta(9)-THC), and endogenous cannabinoid ligands, such as anandamide, signal through G-protein-coupled cannabinoid receptors localised to regions of the brain associated with important neurological processes. Signalling is mostly inhibitory and suggests a role for cannabinoids as therapeutic agents in CNS disease where inhibition of neurotransmitter release would be beneficial. Anecdotal evidence suggests that patients with disorders such as multiple sclerosis smoke cannabis to relieve disease-related symptoms. Cannabinoids can alleviate tremor and spasticity in animal models of multiple sclerosis, and clinical trials of the use of these compounds for these symptoms are in progress. The cannabinoid nabilone is currently licensed for use as an antiemetic agent in chemotherapy-induced emesis. Evidence suggests that cannabinoids may prove useful in Parkinson's disease by inhibiting the excitotoxic neurotransmitter glutamate and counteracting oxidative damage to dopaminergic neurons. The inhibitory effect of cannabinoids on reactive oxygen species, glutamate and tumour necrosis factor suggests that they may be potent neuroprotective agents. Dexanabinol (HU-211), a synthetic cannabinoid, is currently being assessed in clinical trials for traumatic brain injury and stroke. Animal models of mechanical, thermal and noxious pain suggest that cannabinoids may be effective analgesics. Indeed, in clinical trials of postoperative and cancer pain and pain associated with spinal cord injury, cannabinoids have proven more effective than placebo but may be less effective than existing therapies. Dronabinol, a commercially available form of delta(9)-THC, has been used successfully for increasing appetite in patients with HIV wasting disease, and cannabinoid receptor antagonists may reduce obesity. Acute adverse effects following cannabis usage include sedation and anxiety. These effects are usually transient and may be less severe than those that occur with existing therapeutic agents. The use of nonpsychoactive cannabinoids such as cannabidiol and dexanabinol may allow the dissociation of unwanted psychoactive effects from potential therapeutic benefits. The existence of other cannabinoid receptors may provide novel therapeutic targets that are independent of CB(1) receptors (at which most currently available cannabinoids act) and the development of compounds that are not associated with CB(1) receptor-mediated adverse effects. Further understanding of the most appropriate route of delivery and the pharmacokinetics of agents that act via the endocannabinoid system may also reduce adverse effects and increase the efficacy of cannabinoid treatment. This review highlights recent advances in understanding of the endocannabinoid system and indicates CNS disorders that may benefit from the therapeutic effects of cannabinoid treatment. Where applicable, reference is made to ongoing clinical trials of cannabinoids to alleviate symptoms of these disorders.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge