Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical and Biophysical Research Communications 2020-Sep

Jervine inhibits non-small cell lung cancer (NSCLC) progression by suppressing Hedgehog and AKT signaling via triggering autophagy-regulated apoptosis

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Wei Lei
Zhenyun Huo

キーワード

概要

Non-small cell lung cancer (NSCLC) has been identified as a leading cause of tumor-associated death around the world. Presently, it is necessary to find effective and safe therapy for its treatment in clinic. Jervine (Jer), a sterodial alkaloid from rhizomes of Veratrum album, exhibits anti-inflammatory and anti-cancer effects. However, its effects on lung cancer progression are still unknown. In this study, we explored if Jer showed any influences on NSCLC development, as well as the underlying molecular mechanisms. The results showed that Jer time- and dose-dependently reduced the proliferation of NSCLC cells, along with inhibited colony formation capacity. Apoptosis was highly induced by Jer in NSCLC cells through promoting the expression of cleaved Caspase-3. Furthermore, Jer treatment led to autophagy in cancer cells, as evidenced by the fluorescence microscopy results and increases of LC3II. Autophagy inhibitor bafilomycinA1 (BafA1) abrogated the inhibitory effects of Jer on cell proliferation and apoptosis induction, showing that Jer triggered autophagy-mediated apoptosis in NSCLC cells. Additionally, AKT and mammalian target of Rapamycin (mTOR) signaling pathway was highly repressed in cancer cells. Importantly, promoting AKT activation greatly rescued the cell survival, while attenuated autophagy and apoptosis in Jer-incubated NSCLC cells, revealing that Jer-modulated autophagic cell death was through the blockage of AKT signaling. Hedgehog signaling pathway was then found to be suppressed by Jer, as proved by the decreased expression of Sonic Hedgehog (Shh), Hedgehog receptor protein patched homolog 1 (PTCH1), smoothened (SMO) and glioma-associated oncogene homolog 1 (Gli1) in NSCLC cells. Of note, enhancing Shh signaling dramatically diminished the stimulative effects of Jer on autophagy-mediated apoptosis in vitro, demonstrating the importance of Hedgehog signaling in Jer-regulated cell death. Moreover, Jer treatment effectively reduced tumor growth in A549-bearing mice with few toxicity. Together, Jer may be a promising and effective therapeutic strategy for NSCLC treatment.

Keywords: AKT; Autophagy-mediated apoptosis; Hedgehog; Jervine (Jer); NSCLC.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge