Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2005-Sep

Responsive modes of Medicago sativa proline dehydrogenase genes during salt stress and recovery dictate free proline accumulation.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Gadi Miller
Hanan Stein
Arik Honig
Yoram Kapulnik
Aviah Zilberstein

키워드

요약

Free proline accumulation is an innate response of many plants to osmotic stress. To characterize transcriptional regulation of the key proline cycle enzymes in alfalfa (Medicago sativa), two proline dehydrogenase (MsPDH) genes and a partial sequence of Delta (1) -pyrroline-5-carboxylate dehydrogenase (MsP5CDH) gene were identified and cloned. The two MsPDH genes share a high nucleotide sequence homology and a similar exon/intron structure. Estimation of transcript levels during salt stress and recovery revealed that proline accumulation during stress was linearly correlated with a strong decline in MsPDH transcript levels, while Delta (1) -pyrroline-5-carboxylate synthetase (MsP5CS) and MsP5CDH steady-state transcript levels remained essentially unchanged. MsPDH transcript levels dramatically decreased in a fast, salt concentration-dependent manner. The extent of salt-induced proline accumulation also correlated with salt concentrations. Salt-induced repression of MsPDH1 promoter linked to the GUS reporter gene confirmed that the decline in MsPDH transcript levels was due to less transcription initiation. Contrary to the salt-dependent repression, a rapid induction of MsPDH transcription occurred at a very early stage of the recovery process, independently of earlier salt treatments. Hence our results suggest the existence of two different regulatory modes of MsPDH expression; the repressing mode that quantifies salt concentration in an as yet unknown mechanism and the "rehydration"-enhancing mode that responds to stress relief in a maximal induction of MsPDH transcription. As yet the components of salt sensing as well as those that might interact with MsPDH promoter to reduce transcription are still unknown.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge