Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
British Journal of Nutrition 2011-Apr

The antioxidant effects of garlic saponins protect PC12 cells from hypoxia-induced damage.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Hong Luo
Jian Huang
Wei-Gong Liao
Qing-Yuan Huang
Yu-Qi Gao

키워드

요약

Hypoxia frequently occurs under several different cellular circumstances. Excess reactive oxygen species that are induced by hypoxia may result in cell injury and dysfunction. Recently, garlic has been found to possess some biological and pharmacological activities. The present study examined the effects of garlic saponins (GSP) on the survival of differentiated PC12 (dPC12) cells and the oxidative-antioxidant system. dPC12 cells were exposed to 2 % O2 in order to establish a neuronal insult model. Cell viability was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide reduction assay and lactate dehydrogenase (LDH) release assay. The expression of selected genes (catalase (CAT), p65 and neuron-specific class III β-tubulin) was evaluated by real-time PCR and immunoblot assays. CAT activity, malondialdehyde (MDA) and 8-hydroxy-deoxyguanosine (8-OH-dG) concentrations were also determined. The data showed that hypoxia dramatically damaged dPC12 cells, while treatment with approximately 5 × 10- 2-10 ng/ml GSP improved cell viability, decreased LDH leakage and caused the cells to maintain neuronal-like characteristics in hypoxia. The production of MDA and 8-OH-dG was attenuated by GSP. CAT activity in dPC12 cells pretreated with GSP was higher than that of the hypoxic control. Moreover, GSP up-regulated CAT expression and decreased the total protein expression as well as the nuclear expression of p65 in hypoxic cells. These data indicate that GSP has antioxidant properties that can protect dPC12 cells from hypoxia-induced damage, which may be related to the up-regulation of CAT expression and activity as well as a decrease in the expression and nucleus distribution of p65 through effects on redox-sensitive signalling pathways.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge