Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plants 2019-Dec

An Allelopathic Role for Garlic Root Exudates in the Regulation of Carbohydrate Metabolism in Cucumber in a Hydroponic Co-Culture System.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Haiyan Ding
Ahmad Ali
Zhihui Cheng

키워드

요약

Garlic is considered to have a strong positive effect on the growth and yield of receptors under soil cultivation conditions. However, how this positive promotion is produced by changing the growth environment of the receptors or directly acting on the receptors is still not very clear. The direct influence of co-culturing with different quantities of garlic plants (the control 5, 10, 15, 20) on the growth and biochemical processes of cucumber plants was studied using a hydroponic co-culture system. Different numbers of garlic bulbs inhibited the growth of cucumber plants and increased the production and induction of reactive oxygen species, which accompanied the enhancement of lipid peroxidation and oxidative damage to cucumber. This allelopathic exposure further reduced the chlorophyll contents and photosynthesis rate, and consequently impaired the photosynthetic performance of photosystem II (PSII). Garlic root exudates increased the leaves' carbohydrates accumulation, such as soluble sugar contents and sucrose levels by regulating the activities of metabolismic enzymes; however, no such accumulation was observed in the roots. Our results suggested that garlic root exudates can mediate negative plant-plant interactions and its phytotoxic influence on cucumber plants may have occurred through the application of oxidative stress, which consequently imbalanced the source-to-sink photo-assimilate flow.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge