Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Complementary and Alternative Medicine 2017-Jun

Characterization of phytoconstituents and evaluation of antimicrobial activity of silver-extract nanoparticles synthesized from Momordica charantia fruit extract.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Md Mamun Or Rashid
Kazi Nahid Akhter
Jakir Ahmed Chowdhury
Foysal Hossen
Md Saddam Hussain
Md Tanvir Hossain

Maneno muhimu

Kikemikali

BACKGROUND

Our present study was conducted to characterize the phytoconstituents present in the aqueous extract of Momordica charantia and evaluate the antimicrobial efficacy of silver-extract nanoparticles (Ag-Extract-NPs).

METHODS

Silver nanoparticles (AgNPs) were prepared by reducing AgNO3; and NaBH4 served as reducing agent. After screening of phytochemicals; AgNPs and aqueous extract were mixed thoroughly and then coated by polyaniline. These NPs were characterized by using Visual inspection, UV spectroscopy, FTIR, SEM and TEM techniques. Antimicrobial activities were assessed against Staphylococcus aureus, Salmonella typhi, Escherichia coli and Pseudomonas aeruginosa.

RESULTS

Aqueous extract of M. charantia fruits contain alkaloid, phenol, saponin etc. UV-Vis spectrum showed strong absorption peak around 408 nm. The presence of -CH, -NH, -COOH etc. stretching in FTIR spectrum of Ag-Extract-NPs endorsed that AgNPs were successfully capped by bio-compounds. SEM and TEM result revealed that synthesized NPs had particle size 78.5-220 nm. Ag-Extract-NPs showed 34.6 ± 0.8 mm zone of inhibition against E. coli compared to 25.6 ± 0.5 mm for ciprofloxacin. Maximum zone of inhibition for Ag-Extract-NPs were 24.8 ± 0.7 mm, 26.4 ± 0.4 mm, 7.4 ± 0.4 mm for S. aureus, P. aeruginosa and S. typhi. We found that Ag-Extract-NPs have much better antibacterial efficacy than AgNPs and M. charantia extract has individually. It is also noticed that gram negative bacteria (except S. typhi) are more susceptible to Ag-Extract-NPs than gram positive bacteria.

CONCLUSIONS

Ag-Extract-NPs showed strong antibacterial activity. In order to make a reliable stand for mankind, further study is needed to consider determining the actual biochemical pathway by which AgNPs-extracts exert their antimicrobial effect.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge