Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Genetics 2017-Oct

Evolutionarily Conserved Alternative Splicing Across Monocots.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Wenbin Mei
Lucas Boatwright
Guanqiao Feng
James C Schnable
W Brad Barbazuk

Maneno muhimu

Kikemikali

One difficulty when identifying alternative splicing (AS) events in plants is distinguishing functional AS from splicing noise. One way to add confidence to the validity of a splice isoform is to observe that it is conserved across evolutionarily related species. We use a high throughput method to identify junction-based conserved AS events from RNA-Seq data across nine plant species, including five grass monocots (maize, sorghum, rice, Brachpodium, and foxtail millet), plus two nongrass monocots (banana and African oil palm), the eudicot Arabidopsis, and the basal angiosperm Amborella In total, 9804 AS events were found to be conserved between two or more species studied. In grasses containing large regions of conserved synteny, the frequency of conserved AS events is twice that observed for genes outside of conserved synteny blocks. In plant-specific RS and RS2Z subfamilies of the serine/arginine (SR) splice-factor proteins, we observe both conservation and divergence of AS events after the whole genome duplication in maize. In addition, plant-specific RS and RS2Z splice-factor subfamilies are highly connected with R2R3-MYB in STRING functional protein association networks built using genes exhibiting conserved AS. Furthermore, we discovered that functional protein association networks constructed around genes harboring conserved AS events are enriched for phosphatases, kinases, and ubiquitylation genes, which suggests that AS may participate in regulating signaling pathways. These data lay the foundation for identifying and studying conserved AS events in the monocots, particularly across grass species, and this conserved AS resource identifies an additional layer between genotype to phenotype that may impact future crop improvement efforts.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge