Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Horticulture Research 2015

Metabolic changes upon flower bud break in Japanese apricot are enhanced by exogenous GA4.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Weibing Zhuang
Zhihong Gao
Luhua Wen
Ximei Huo
Binhua Cai
Zhen Zhang

Maneno muhimu

Kikemikali

Gibberellin (GA4) has a significant effect on promoting dormancy release in flower buds of Japanese apricot (Prunus mume Sieb. et Zucc). The transcriptomic and proteomic changes that occur after GA4 treatment have been reported previously; however, the metabolic changes brought about by GA4 remain unknown. The present study was undertaken to assess changes in metabolites in response to GA4 treatment, as determined using gas chromatography-mass spectrometry and principal component analysis. Fifty-five metabolites that exhibited more than two-fold differences in abundance (P < 0.05) between samples collected over time after a given treatment or between samples exposed to different treatments were studied further. These metabolites were categorized into six main groups: amino acids and their isoforms (10), amino acid derivatives (7), sugars and polyols (14), organic acids (12), fatty acids (4), and others (8). All of these groups are involved in various metabolic pathways, in particular galactose metabolism, glyoxylate and dicarboxylate metabolism, and starch and sucrose metabolism. These results suggested that energy metabolism is important at the metabolic level in dormancy release following GA4 treatment. We also found that more than 10-fold differences in abundance were observed for many metabolites, including sucrose, proline, linoleic acid, and linolenic acid, which might play important roles during the dormancy process. The current research extends our understanding of the mechanisms involved in budburst and dormancy release in response to GA4 and provides a theoretical basis for applying GA4 to release dormancy.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge