Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis 2000-Apr

Primary prevention of hepatocellular carcinoma in developing countries.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
C P Wild
A J Hall

Maneno muhimu

Kikemikali

Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world with 80% of cases occurring in developing countries. The cancer is rapidly fatal in almost all cases with survival generally less than 1 year from diagnosis. The major risk factors for this cancer have been identified as chronic infection with hepatitis B (HBV) and hepatitis C (HCV) viruses and dietary exposure to aflatoxins. There is a safe and effective vaccine to prevent chronic HBV infection. Given estimates that approximately 70% of HCC in developing countries is attributable to HBV then vaccination could prevent more than 250,000 cases per year in these areas of the world. A major challenge now is to ensure the availability of vaccine in countries with endemic infection. Development of a vaccine against HCV is more problematic due to the genetic heterogeniety of the virus. However, with 24% of HCC in developing countries attributable to HCV (approximately 93,000 cases per year) a vaccine would make a major contribution to cancer prevention. Aflatoxins contaminate dietary staple foods (groundnuts, maize), are potent animal hepatocarcinogens and are carcinogenic in humans with particularly high risks in individuals with a concomitant infection with HBV. Reduction of exposure can be addressed at the community level either pre- or post-harvest by limiting fungal contamination of crops; approaches may involve low technology post-harvest measures to limit fungal growth or genetic engineering of crops to be resistant to fungal infection or toxin biosynthesis. An alternative measure is to modulate the metabolism of aflatoxins once ingested using chemopreventive agents e.g., oltipraz. The resources available in countries with endemic hepatitis infection and fungal contamination of foods are often severely limited. Clearly HBV vaccination has to be the priority in the reducing the incidence of HCC. However, there are currently 360 million chronic HBV carriers worldwide and HBV vaccine is still not incorporated into many national immunisation programs. Thus measures to reduce food spoilage by fungi and the associated dietary exposure to aflatoxins is also a desirable public health goal.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge