English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

trimethylamine/inflammation

The link is saved to the clipboard
Page 1 from 220 results

Effect of trimethylamine N-oxide on inflammation and the gut microbiota in Helicobacter pylori-infected mice.

Only registered users can translate articles
Log In/Sign up
Diet is one of the factors contributing to symptom of Helicobacter pylori (H. pylori) infection. Trimethylamine N-oxide (TMAO), a diet-related microbial metabolite, is associated with inflammatory and metabolic diseases. The aim of this study is to investigate the effects of TMAO intake on

Prevention of Vascular Inflammation by Pterostilbene via Trimethylamine-N-Oxide Reduction and Mechanism of Microbiota Regulation.

Only registered users can translate articles
Log In/Sign up
A gut-microbiota-dependent metabolite of L-carnitine, trimethylamine-N-oxide (TMAO), has been recently discovered as an independent and dose-dependent risk factor for cardiovascular disease (CVD). This study aims to investigate the effects of pterostilbene on reducing TMAO formation

Novel Findings of the Association Between Gut Microbiota-Derived Metabolite Trimethylamine N- Oxide and Inflammation: Results From a Systematic Review and Dose-Response Meta-Analysis

Only registered users can translate articles
Log In/Sign up
The gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) has been regarded as one of the potent risk factors of cardiovascular events and diabetes. However, its association with possible inflammatory mediators has not been revealed yet. In the current meta-analysis, we

Trimethylamine-N-Oxide Induces Vascular Inflammation by Activating the NLRP3 Inflammasome Through the SIRT3-SOD2-mtROS Signaling Pathway.

Only registered users can translate articles
Log In/Sign up
BACKGROUND Trimethylamine-N-oxide (TMAO) has recently been identified as a novel and independent risk factor for promoting atherosclerosis through inducing vascular inflammation. However, the exact mechanism is currently unclear. Studies have established a central role of nucleotide-binding

Gut Microbiota-Dependent Trimethylamine N-Oxide Associates With Inflammation in Common Variable Immunodeficiency

Only registered users can translate articles
Log In/Sign up
A substantial proportion of patients with common variable immunodeficiency (CVID) have inflammatory and autoimmune complications of unknown etiology. We have previously shown that systemic inflammation in CVID correlates with their gut microbial dysbiosis. The gut microbiota dependent metabolite

Choline metabolite, trimethylamine N-oxide (TMAO), is associated with inflammation in psoriatic arthritis.

Only registered users can translate articles
Log In/Sign up
Dietary intake of choline has been linked to systemic inflammation through the microbial production of two metabolites, trimethylamine (TMA) and trimethylamine-N-oxide (TMAO). Herein we explore the association between choline metabolites and inflammation in psoriatic arthritis (PsA)

Trimethylamine-N-oxide: A Novel Biomarker for the Identification of Inflammatory Bowel Disease.

Only registered users can translate articles
Log In/Sign up
BACKGROUND The gastrointestinal (GI) microbiome is recognized for potential clinical relevance in inflammatory bowel disease (IBD). Data suggest that there is a disease-dependent loss of microbial diversity in IBD. Trimethylamine-N-oxide (TMAO) is generated by GI anaerobes through the digestion of

Trimethylamine N-Oxide Generated by the Gut Microbiota Is Associated with Vascular Inflammation: New Insights into Atherosclerosis.

Only registered users can translate articles
Log In/Sign up
Trimethylamine N-oxide (TMAO) is a biologically active molecule generated by the gut microbiota. Accumulating evidences have indicated a close association between high plasma TMAO levels and the risk of developing atherosclerosis (AS). AS is considered a chronic inflammatory disease initiated by

Elevated Circulating Trimethylamine N-Oxide Levels Contribute to Endothelial Dysfunction in Aged Rats through Vascular Inflammation and Oxidative Stress.

Only registered users can translate articles
Log In/Sign up
Vascular endothelial dysfunction, a characteristic of the aging process, is an important risk factor for cardiovascular disease in aging. Although, vascular inflammation and oxidative stress are major contributors to endothelial dysfunction in aging, the underlying mechanisms during the aging

Plasma Concentrations of Trimethylamine-N-oxide Are Directly Associated with Dairy Food Consumption and Low-Grade Inflammation in a German Adult Population.

Only registered users can translate articles
Log In/Sign up
BACKGROUND Trimethylamine-N-oxide (TMAO) is a metabolite of carnitine, choline, and phosphatidylcholine, which is inversely associated with survival of cardiovascular disease (CVD) patients. OBJECTIVE We examined the associations of diet with plasma concentrations of TMAO, choline, and betaine and

Associations of Trimethylamine N-Oxide With Nutritional and Inflammatory Biomarkers and Cardiovascular Outcomes in Patients New to Dialysis.

Only registered users can translate articles
Log In/Sign up
OBJECTIVE Trimethylamine N-oxide (TMAO) is a product of metabolism of phosphatidylcholine (lecithin) and carnitine by the intestinal microbiome. Elevated serum concentrations of TMAO have been linked to adverse cardiovascular outcomes in the general population. We examined correlates of serum TMAO

Oolong Tea Extract and Citrus Peel Polymethoxyflavones Reduce Transformation of l-Carnitine to Trimethylamine-N-Oxide and Decrease Vascular Inflammation in l-Carnitine Feeding Mice.

Only registered users can translate articles
Log In/Sign up
Carnitine, a dietary quaternary amine mainly from red meat, is metabolized to trimethylamine (TMA) by gut microbiota and subsequently oxidized to trimethylamine-N-oxide (TMAO) by host hepatic enzymes, flavin monooxygenases (FMOs). The objective of this study aims to investigate the effects of

Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the Multiethnic Cohort Adiposity Phenotype Study.

Only registered users can translate articles
Log In/Sign up
Trimethylamine N-oxide (TMAO), a compound derived from diet and metabolism by the gut microbiome, has been associated with several chronic diseases, although the mechanisms of action are not well understood and few human studies have investigated microbes involved in its

The Presence of High Levels of Circulating Trimethylamine N-Oxide Exacerbates Central and Peripheral Inflammation and Inflammatory Hyperalgesia in Rats Following Carrageenan Injection.

Only registered users can translate articles
Log In/Sign up
Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) has recently been shown to promote inflammation in peripheral tissues and the central nervous system (CNS), contributing to the pathogenesis of various human diseases. Here, we examined whether the presence of high levels of circulating

Effect of Vegan Fecal Microbiota Transplantation on Carnitine- and Choline-Derived Trimethylamine-N-Oxide Production and Vascular Inflammation in Patients With Metabolic Syndrome.

Only registered users can translate articles
Log In/Sign up
BACKGROUND Intestinal microbiota have been found to be linked to cardiovascular disease via conversion of the dietary compounds choline and carnitine to the atherogenic metabolite TMAO (trimethylamine-N-oxide). Specifically, a vegan diet was associated with decreased plasma TMAO levels and nearly
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge