Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical and Biophysical Research Communications 2018-02

Isovitexin (IV) induces apoptosis and autophagy in liver cancer cells through endoplasmic reticulum stress.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Sheng-Xiang Lv
Xiao Qiao

Maneno muhimu

Kikemikali

Liver cancer is a leading cause of cancer death worldwide, and novel chemotherapeutic drugs to suppress liver cancer are urgently required. Isovitexin (IV), a glycosylflavonoid, is extracted from rice hulls of Oryza sativa, and has various biological activities. However, the anti-tumor effect of IV against liver cancer has not yet been demonstrated in vitro or in vivo. In the present study, we showed that IV significantly suppressed the growth of liver cancer cells. Mechanistic studies indicated that IV induced apoptosis by the mitochondrial apoptotic pathway, as evidenced by the increase of Bax, cleaved Caspase-3, poly (ADP-ribose) polymerase (PARP), and cytoplasm Cyto-c released from mitochondria. In addition, IV resulted in autophagy in liver cancer cells, supported by the enhancement of LC3II, autophagy-related protein (Atg) 3, Atg5 and Beclin1. Suppressing autophagy using bafilomycin A1 (BFA) or siRNA Atg-5 reduced apoptotic cells in IV-treated cells, demonstrating that autophagy induction regulated apoptosis. Moreover, IV was found to cause endoplasmic reticulum (ER) stress in liver cancer cells, along with the promotion of ER stress-related molecules, including inositol-requiring enzyme 1α (IRE1α), X-box-binding protein-1s (XBP-1s), C/EBP homologous protein (CHOP) and glucose-regulated protein (GRP)-78. Of note, inhibition of ER stress by use of its inhibitor, tauroursodeoxycholate (TUDCA), significantly reversed IV-induced apoptosis and autophagy. In vivo, IV treatment showed significant tumor growth inhibition compared to the non-treated group. IV could therefore be a strong candidate for liver cancer prevention.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge